

Model EX357C71

357 high temp kit

Installation and Operating Manual

For assistance with the operation of this product, contact the PCB Piezotronics, Inc.

Toll-free: 716-684-0001 24-hour SensorLine: 716-684-0001 Fax: 716-684-0987 E-mail: info@pcb.com Web: www.pcb.com

Repair and Maintenance

PCB guarantees Total Customer Satisfaction through its "Lifetime Warranty Plus" on all Platinum Stock Products sold by PCB and through its limited warranties on all other PCB Stock, Standard and Special products. Due to the sophisticated nature of our sensors and associated instrumentation, field servicing and repair is not recommended and, if attempted, will void the factory warranty.

Beyond routine calibration and battery replacements where applicable, our products require no user maintenance. Clean electrical connectors, housings, and mounting surfaces with solutions and techniques that will not harm the material of construction. Observe caution when using liquids near devices that are not hermetically sealed. Such devices should only be wiped with a dampened cloth—never saturated or submerged.

In the event that equipment becomes damaged or ceases to operate, our Application Engineers are here to support your troubleshooting efforts 24 hours a day, 7 days a week. Call or email with model and serial number as well as a brief description of the problem.

Calibration

Routine calibration of sensors and associated instrumentation is necessary to maintain measurement accuracy. We recommend calibrating on an annual basis, after exposure to any extreme environmental influence, or prior to any critical test.

PCB Piezotronics is an ISO-9001 certified company whose calibration services are accredited by A2LA to ISO/IEC 17025, with full traceability to SI through N.I.S.T. In addition to our standard calibration services, we also offer specialized tests, including: sensitivity at elevated or cryogenic temperatures, phase response, extended high or low frequency response, extended range, leak testing, hydrostatic pressure testing, and others. For more information, contact your local PCB Piezotronics distributor, sales representative, or factory customer service representative.

Returning Equipment

If factory repair is required, our representatives will provide you with a Return Material Authorization (RMA) number, which we use to reference any information you have already provided and expedite the repair process. This number should be clearly marked on the outside of all returned package(s) and on any packing list(s) accompanying the shipment.

Contact Information

PCB Piezotronics, Inc. 3425 Walden Ave. Depew, NY14043 USA Toll-free: (800) 828-8840 24-hour SensorLine: (716) 684-0001 General inquiries: <u>info@pcb.com</u> Repair inquiries: <u>rma@pcb.com</u>

For a complete list of distributors, global offices and sales representatives, visit our website, <u>www.pcb.com</u>.

Safety Considerations

This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the precautions required to avoid injury. While our equipment is designed with user safety in mind, the protection provided by the equipment may be impaired if equipment is used in a manner not specified by this manual.

Discontinue use and contact our 24-Hour Sensorline if:

- Assistance is needed to safely operate equipment
- Damage is visible or suspected
- Equipment fails or malfunctions

For complete equipment ratings, refer to the enclosed specification sheet for your product.

Definition of Terms and Symbols

The following symbols may be used in this manual:

DANGER

Indicates an immediate hazardous situation, which, if not avoided, may result in death or serious injury.

CAUTION

Refers to hazards that could damage the instrument.

NOTE

Indicates tips, recommendations and important information. The notes simplify processes and contain additional information on particular operating steps.

The following symbols may be found on the equipment described in this manual:

This symbol on the unit indicates that high voltage may be present. Use standard safety precautions to avoid personal contact with this voltage.

This symbol on the unit indicates that the user should refer to the operating instructions located in the manual.

This symbol indicates safety, earth ground.

PCB工业监视和测量设备 - 中国RoHS2公布表 PCB Industrial Monitoring and Measuring Equipment - China RoHS 2 Disclosure Table

	有害物 质					
部件名称	铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr(VI))	多溴 联苯 (PBB)	多溴二苯 醚 (PBDE)
住房	0	0	0	0	0	0
PCB板	Х	0	0	0	0	0
电气连接 器	0	0	0	0	0	0
压电晶 体	х	0	0	0	0	0
环氧	0	0	0	0	0	0
铁氟龙	0	0	0	0	0	0
电子	0	0	0	0	0	0
厚膜基板	0	0	Х	0	0	0
电线	0	0	0	0	0	0
电缆	Х	0	0	0	0	0
塑料	0	0	0	0	0	0
焊接	Х	0	0	0	0	0
铜合金 /黄 铜	Х	0	0	0	0	0
本表格依据 SJ/T 11364 的规定编制。						
O:表示该有害物质在该部件所有均质材料中的含量均在 GB/T 26572 规定的限量要求以下。						
X:表示该有害物质至少在该部件的某一均质材料中的含量超出 GB/T 26572 规定的限量要求。 铅是欧洲RoHS指令2011/65/ EU附件三和附件四目前由于允许的豁免。						

CHINA ROHS COMPLIANCE

Component Name	Hazardous Substances						
	Lead (Pb)	Mercury (Hg)	Cadmium (Cd)	Chromium VI Compounds (Cr(VI))	Polybrominated Biphenyls (PBB)	Polybrominated Diphenyl Ethers (PBDE)	
Housing	0	0	0	0	0	0	
PCB Board	Х	0	0	0	0	0	
Electrical Connectors	0	0	0	0	0	0	
Piezoelectric Crystals	Х	0	0	0	0	0	
Ероху	0	0	0	0	0	0	
Teflon	0	0	0	0	0	0	
Electronics	0	0	0	0	0	0	
Thick Film Substrate	0	0	Х	0	0	0	
Wires	0	0	0	0	0	0	
Cables	Х	0	0	0	0	0	
Plastic	0	0	0	0	0	0	
Solder	Х	0	0	0	0	0	
Copper Alloy/Brass	Х	0	0	0	0	0	

This table is prepared in accordance with the provisions of SJ/T 11364.

O: Indicates that said hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement of GB/T 26572.

X: Indicates that said hazardous substance contained in at least one of the homogeneous materials for this part is above the limit requirement of GB/T 26572.

Lead is present due to allowed exemption in Annex III or Annex IV of the European RoHS Directive 2011/65/EU.

General OPERATING GUIDE

for use with

PIEZOELECTRIC CHARGE MODE ACCELEROMETERS

SPECIFICATION SHEET, INSTALLATION DRAWING AND CALIBRATION INFORMATION ENCLOSED

PCB ASSUMES NO RESPONSIBILITY FOR DAMAGE CAUSED TO THIS PRODUCT AS A RESULT OF PROCEDURES THAT ARE INCONSISTENT WITH THIS OPERATING GUIDE.

1.0 INTRODUCTION

Congratulations on the purchase of a quality PCB charge mode accelerometer. In order to ensure the highest level of performance for this product, it is imperative that you properly familiarize yourself with the correct mounting and installation techniques before attempting to operate this device. If, after reading this manual, you have any additional questions concerning this sensor or its application, feel free to call an Application Engineer at 716-684-0001 or the closest PCB representative.

2.0 CHARGE MODE ACCELEROMETERS

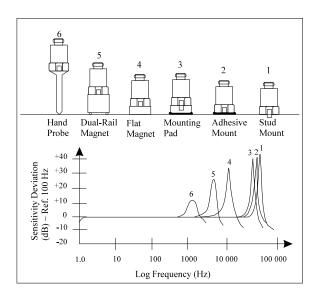
Ceramic and UHT 12 shear-structured accelerometers offer high performance for precision vibration measurements in high-temperature environments. The use of sensing crystals, operating in the shear mode, reduces erroneous output due to base strain, thermal transients, and transverse motion.

Charge mode accelerometers output a strong, highimpedance charge signal directly from their sensing element. They do not contain built-in signal conditioning electronics; the signal is conditioned externally by either a laboratory-style charge amplifier or in-line charge converter prior to being analyzed by a readout or recording device. The absence of built-in electronics permits operation to elevated temperatures of 500 °F (260 °C) for most ceramic crystal models and typically 900 °F (482 °C) and extreme application up to 1200 °F (650 °C) for UHT-12.

These accelerometers are ideal for structural testing, machine monitoring, and vehicular shock and vibration measurement tasks where high temperatures preclude the use of accelerometers with built-in microelectronics. Enclosed is a **Specification Sheet**, which lists the complete performance characteristics of the particular accelerometer.

3.0 OPTIONAL FEATURES

In addition to these standard features, a variety of options are also available. When listed before the model number, the following prefix letters indicate that the sensor is manufactured or supplied with optional features: A option- adhesive mount; J option- electrical ground isolation; M option- metric mounting thread; P option- positive polarity output (for use with non-inverting, signal conditioning amplifiers); and W option-water-resistant cable connection.


4.0 INSTALLATION OVERVIEW

When choosing a mounting method, consider closely both the advantages and disadvantages of each technique. Characteristics like location, ruggedness, amplitude range, accessibility, temperature, and portability are extremely critical. However, the most important and often overlooked consideration is the effect the mounting technique has on the high-frequency performance of the accelerometer.

Shown hereafter are six possible mounting techniques and their effects on the performance of a typical piezoelectric accelerometer. (Note that not all of the mounting methods may apply to your particular sensor.) The mounting configurations and corresponding graph demonstrate how the high-frequency response of the accelerometer may be compromised as mass is added to the system and/or the mounting stiffness is reduced.

Note: The low-frequency response is unaffected by the mounting technique. Its roll-off behavior is dependent

upon the coupling type or time constant of the external charge amplifying device. This characteristic may be fixed or adjustable, depending on the charge amplifier. Please refer to the appropriate charge amplifier specification sheet for information on low-frequency characteristics.

Figure 1. Assorted Mounting Configurations and Their Effects on High Frequency

4.1 STUD MOUNT

This mounting technique requires smooth, flat contact surfaces for proper operation and is recommended for permanent and/or secure installations. Stud mounting is also recommended when testing at high frequencies.

Note: Do NOT attempt mounting on curved, rough, or uneven surfaces, as the potential for misalignment and limited contact surface may significantly reduce the sensor's upper operating frequency range.

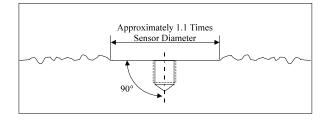


Figure 2. Mounting Surface Preparation

STEP 1: First, prepare a smooth, flat mounting surface, then drill and tap a mounting hole in the center of this area as shown in Figure 2 and in accordance with the **Installation Drawing** for the specific sensor that is being mounted.

A precision-machined mounting surface with a minimum finish of 63 μ in (0.00016 mm) is recommended. (If it is not possible to properly prepare the test structure mounting surface, consider adhesive mounting as a possible alternative.) Inspect the area, checking that there are no burrs or other foreign particles interfering with the contact surface.

STEP 2: Wipe clean the mounting surface and spread on a light film of grease, oil, or similar coupling fluid prior to installation.

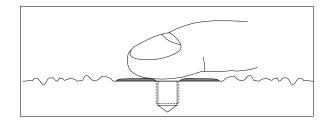


Figure 3. Mounting Surface Lubrication

Adding a coupling fluid improves vibration transmissibility by filling small voids in the mounting surface and increasing the mounting stiffness. For semipermanent mounting, substitute epoxy or another type of adhesive.

STEP 3: Screw the mounting stud into the base of the accelerometer and hand-tighten. Then, screw the sensor/stud assembly into the prepared tapped hole and tighten to the recommended mounting torque as indicated on the **Installation Drawing**.

Note: It is important to use a torque wrench during this step. Under-torquing the sensor may not adequately couple the device; over-torquing may result in stud failure.

4.2 ADHESIVE MOUNT

Adhesive mounting is often used for temporary installation or when the test object surface cannot be adequately prepared for stud mounting. Adhesives like hot glue and wax work well for temporary mounts; twopart epoxies and quick-bonding gels provide a more permanent mount.

Note: Adhesively mounted sensors often exhibit a reduction in high-frequency range. Generally, smooth surfaces and stiff adhesives provide the best frequency response.

METHOD 1 - Adhesive Mounting Base

This method involves attaching a base to the test structure, then securing the sensor to the base. This allows for easy removal of the accelerometer. Also, since the bases are of a "hard-coated" aluminum design, they provide electrical isolation to eliminate ground loops and reduce electrical interference that may be present on the surface of the test object.

STEP 1: Prepare a smooth, flat mounting surface. A minimum surface finish of 63 μ in (0.00016 mm) generally works best.

STEP 2: Stud-mount the sensor to the appropriate adhesive mounting base according to the guidelines set forth in **STEPS 2** and **3** of the Stud Mount Procedure.

STEP 3: Place a small portion of adhesive on the underside of the mounting base. Firmly press down on the assembly to displace any extra adhesive remaining under the base.

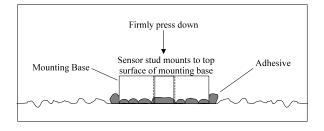


Figure 4. Mounting Base: Adhesive Installation

METHOD 2 - Direct Adhesive Mount

For restrictions of space or for convenience, most sensors (with the exception of integral stud models) can be adhesive-mounted directly to the test structure.

STEP 1: Prepare a smooth, flat mounting surface. A minimum surface finish of 63 μ in (0.00016 mm) generally works best.

STEP 2: Place a small portion of adhesive on the underside of the sensor. Firmly press down on the top of the assembly to displace any adhesive. Be aware that excessive amounts of adhesive can make sensor removal difficult.

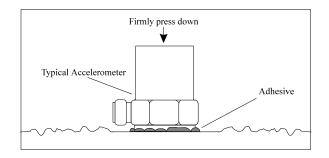


Figure 5. Direct Adhesive Mounting

4.3 HANDHELD OR PROBE TIP MOUNT

This method is NOT recommended for most applications. It is generally used only for machinery monitoring and other portable trending applications. Both the accuracy and repeatability at low (<5 Hz) and high frequency (>1 kHz) ranges are questionable.

5.0 CABLING

Care and attention to installation is essential, as the reliability and accuracy of your system is no better than that of the output cable. Charge mode sensors require the use of low noise cables. Cables and connectors must be kept clean and dry to maintain high insulation resistance. In the event that the insulation resistance is compromised, inspect, clean, and bake cables and connectors to restore insulation resistance.

STEP 1: Ascertain that you have ordered the correct cable type. Use only PCB Series 003 Low-Noise Cable (or equivalent) with charge-output accelerometers. Some integral-cable units use Series 030 Cable, which is also low noise. Keep connections clean to maintain insulation resistance and good low-frequency response.

STEP 2: Connect the cable to the accelerometer. A small amount of thread-locking compound placed on the connector prior to attachment helps secure the cable during testing. In harsh environments, the connection can be sealed with silicone rubber, O-rings, and flexible heat-shrink tubing.

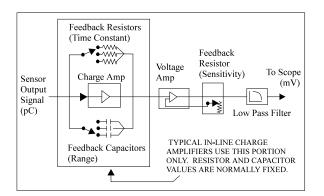
TYPE 1: Coaxial Connectors

First, plug the male connector of the cable into the mating female sensor connector. Then, holding the sensor stationary, secure the connector in place by tightening down the attached cable sleeve.

TYPE 2: Pigtail Connections

"Pigtail" connections are convenient for easy field repair of cable connections. Simply solder the stripped cable to the exposed pins on the sensor. (Check the **Installation Drawing** to determine signal and ground pins.) In many cases, it is also helpful to protect the solder joint with heat-shrink tubing or epoxy.

Note: If you do not have the experience or resources to attach pigtail leads, consult PCB to discuss factory attachment. Damage caused by excessive heat is not covered by warranty.


STEP 3: Route the cable to the signal conditioner, making certain to stress-relieve the sensor/cable connection and minimize motion by clamping the cable at regular intervals.

Certain precautions should be used to avoid physical damage and minimize electrical noise. For instance, avoid routing cables near high-voltage wires. Do not route cables along floors or walkways where they may be stepped on or become contaminated. Shielded cables should have the shield grounded at one end only.

STEP 4: Finally, connect the remaining cable end to the signal conditioner. To dissipate charge that may have accumulated in the cable, short the signal lead to the ground lead prior to attachment.

6.0 POWERING

A conventional method for conditioning the highimpedance signal generated by a charge output sensor is to use a laboratory-style charge amplifier. The charge amplifier converts the high-impedance charge signal generated by the sensor to a low-impedance voltage signal that can then be transmitted to a readout or a recording device for analysis. Before connecting the low-noise cable from the accelerometer to the charge amplifier, be sure to ground both the charge amplifier and the cable. This ensures that an excessive static charge that may have accumulated across the accelerometer or cable is harmlessly discharged. Failure to observe this precaution can result in the destruction of the input FET of certain amplifiers.

Once each element is connected, allow a few minutes for the system to thermally stabilize. Place the switch on the charge amplifier in the OPERATE position and proceed with the measurement.

It is often convenient to normalize the accelerometer and charge amplifier system to a precise sensitivity, such as 10.0 or 100.0 mV/g for ease of data analysis. This is accomplished with most PCB laboratory charge amplifiers and some miniature in-line units as well.

For fixed sensitivity in-line charge converters, such as the PCB Series 422, the system sensitivity (mV/g) is determined as the product of the charge amplifier sensitivity (mV/pC) and the charge sensitivity of the accelerometer (pC/g).

Note: When using charge-amplified systems, the noise floor of the system is dependent on the input capacitance to the charge amplifier. Since the cable adds to the capacitance and to minimize the noise threshold, keep the cable length between the accelerometer and the charge amplifier to a minimum. Cable length does not affect the system sensitivity of charge-amplified systems.

Since charge amplifier operation varies, please contact the respective signal conditioner manufacturer or check the product manual for additional information.

7.0 ACCELEROMETER CALIBRATION

Accelerometer calibration provides, with a definable degree of accuracy, the necessary link between the physical quantity being measured and the electrical signal generated by the sensor. In addition, other useful information concerning operational limits, physical parameters, electrical characteristics, or environmental influences may also be determined. Without this link, analyzing data becomes a nearly impossible task. PCB provides a calibration record that documents the exact characteristics of each sensor. (The type and amount of data varies depending on the sensor type, contractual regulations, and other special requirements.)

Under normal operating conditions, piezoelectric sensors are extremely stable, and their calibrated performance characteristics do not change over time. However, harsh environments or other unusual conditions that cause the sensor to experience dynamic phenomena outside of its specified operating range may temporarily or permanently affect the sensor. This change manifests itself in a variety of ways, including a shift of the sensor resonance due to a cracked crystal, or a temporary loss of low-frequency measuring capability due to a drop in insulation resistance.

For these reasons, it is recommended that a recalibration cycle be established for each accelerometer. This schedule is unique and is based on a variety of factors, such as extent of use, environmental conditions, accuracy requirements, trend information obtained from previous calibration records, contractual regulations, frequency of "cross-checking" against other equipment, manufacturer recommendation, and any risk associated with incorrect readings. International standards, such as ISO 10012-1, provide insight and suggested methods for determining recalibration intervals for most measuring equipment. With the above information in mind and under "normal" circumstances, PCB conservatively suggests a 12- to 24-month recalibration cycle for most piezoelectric accelerometers.

Note: It is good measurement practice to verify the performance of each accelerometer with a Handheld Shaker or other calibration device before and after each measurement. The PCB Model 394C06 Handheld Shaker operates at a fixed frequency and known amplitude (1.0 g) to provide a quick check of sensor sensitivity.

7.1 SENSOR RECALIBRATION

Accelerometer recalibration services are typically performed by PCB's internal metrology laboratory. (Other international and private laboratories are also available.) The PCB laboratory is certified to ISO 9001, accredited by A2LA to ISO 17025, complies with ISO 10012-1 (and former MIL-STD-45662A), and uses equipment directly traceable to N.I.S.T. This assures an accurate calibration of relevant specifications.

In addition, many companies choose to purchase the equipment necessary to perform the recalibration procedure themselves. While this may result in both a savings of time and money, it has also been attributed to incorrect readings and costly errors. Therefore, in an effort to prevent the common mistakes associated with customer-performed calibration, this document includes a broad overview of the Back-to-Back Calibration technique. This technique provides a quick and easy method for determining the sensitivity of a test accelerometer over a wide frequency range.

7.2 BACK-TO-BACK CALIBRATION THEORY

Back-to-Back Calibration is perhaps the most common method for determining the sensitivity of piezoelectric accelerometers. This method relies on a simple comparison to a previously calibrated accelerometer, typically referred to as a reference standard.

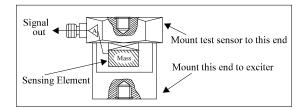


Figure 9. Reference Standard Accelerometer

These high-accuracy devices, which are directly traceable to a recognized standards laboratory, are designed for stability, as well as configured to accept a test accelerometer. By mounting a test accelerometer to the reference standard and then connecting this combination to a suitable vibration source, it is possible to vibrate both devices and compare the data as shown in Figure 10. (Test set-ups may be automated and vary, depending on the type and number of accelerometers being calibrated.)

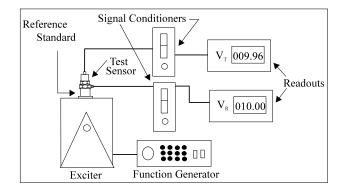


Figure 10. Typical Back-to-Back Calibration System

Because the acceleration is the same on both sensors, the ratio of their outputs (V_T/V_R) must also be the ratio of their sensitivities. With the sensitivity of the reference standard (S_R) known, the exact sensitivity of the test sensor (S_T) is easily calculated by using the following equation:

$$S_{T} = S_{R} (V_{T}/V_{R})$$

By varying the frequency of the vibration, the sensor may be calibrated over its entire operating frequency range. The typical response of an unfiltered accelerometer is shown in Figure 11.

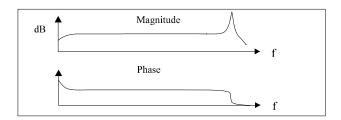


Figure 11. Typical Test Accelerometer Response

7.3 PCB CALIBRATION PROCEDURE

Numerous precautions are taken at PCB to insure accurate and repeatable results. This section provides a brief overview of the primary areas of concern.

Since the Back-to-Back Calibration technique relies on each sensor experiencing an identical acceleration level, proper mounting of the test sensor to the reference standard is imperative. Sensors with mounting holes are attached directly to the reference standard with a stud tightened to the recommended mounting torque. A shouldered mounting stud is typically used to prevent the stud from "bottoming out" in the hole.

Both mounting surfaces are precision-machined and lapped to provide a smooth, flat interface according to the manufacturer's specification. A thin layer of silicone grease is placed between the mating surfaces to fill any imperfections and increase the mounting stiffness. The cables are stress-relieved by first routing them to the shaker head, securing them with tape or cable ties, then routing them to a nearby stationary location. This reduces cable motion, which is especially important when testing charge output sensors and helps to prevent extraneous noise or stresses from being imparted into the system. A typical set-up is shown in Figure 12.

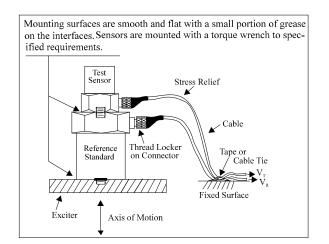


Figure 12. Typical Calibration Set-Up

Adhesively mounted sensors use similar practices. However, in this case, a small portion of quick-bonding gel or similar temporary adhesive is used to attach the test sensor to a reference standard designed with a smooth, flat mounting surface.

In addition to mounting, the selection of the proper equipment is critical. Some of the more important considerations include: 1) the reference standard must be specified and previously calibrated over the frequency and/or amplitude range of interest; 2) the shaker should be selected to provide minimal transverse (lateral) motion and minimal distortion; and 3) the quality of the meters, signal generator, and other devices should be selected so as to operate within the limits of permissible error.

7.4 COMMON MISTAKES

Most calibration errors are caused by simply overlooking some of the fundamental principals of dynamics. This section attempts to address some of the more common concerns.

For stud-mount sensors, always mount the accelerometer directly to the reference standard. Ensure that the mounting surfaces are smooth, flat, and free of any burrs. Always use a coupling fluid, such as silicone grease, in the mounting interface to maintain a high mounting stiffness. Mount the sensor according to the manufacturer's recommended mounting torque. DO NOT use any intermediate mounting adaptors, as the mounted resonant frequency may be reduced and thereby compromise the high-frequency performance. If necessary, use adaptor studs.

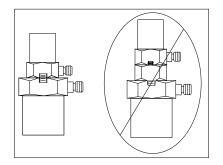


Figure 13. Stud Mounting

For adhesive mount sensors, use a thin, stiff layer of temporary adhesive such as quick-bonding gel or superglue. DO NOT use excessive amounts of glue or epoxy, as the mounting stiffness may be reduced and compromise high-frequency performance. It may also damage the sensor during removal.

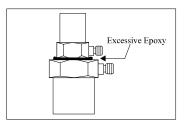


Figure 14. Incorrect Adhesive Mounting

Triaxial accelerometers should always be mounted directly to the reference standard. Unless absolutely required, DO NOT use adaptors to re-orient the sensor along the axis of motion, as the mounting stiffness may be altered. The vibration at the test sensor sensing element may differ from the vibration at the reference standard due to a "cantilever" effect, seen in Figure 15.

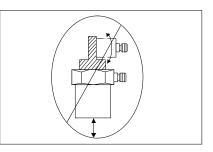


Figure 15. Mounting Triaxial Sensors (Incorrect)

Understand Back-to-Back Calibration limitations. Do not expect the uncertainty of calibration to be any better than $\pm 2\%$. (In fact, the uncertainty may be as high as $\pm 3\%$ or $\pm 4\%$ for frequencies <10 Hz or >2 kHz.) Since large sensors may affect high-frequency accuracy, verify that the test sensor does not mass load the reference standard. Validate your calibration system with another accelerometer prior to each calibration session. Check with the manufacturer for exact system specifications.

7.5 CONCLUSIONS

Without an adequate understanding of dynamics, determining what, when, and how to test a sensor is a difficult task. Therefore, each user must weigh the cost, time, and risk associated with self-calibration versus the services of an accredited laboratory.

NY 14043 hour SensorLineSM: 716-684-

0001 • FAX: 716-685-3886 E-mail: vibration@pcb.com • Website: www.pcb.com

File name: VIB-CHGOPGUIDE-0702

Toll Free: 888-684-0013 • 24-

Doc. No. 18293 Rev. A

3:3)3)11 Date: 3)3)11 33013		P	cations without notic	se specified. ve the right to change specific	All specifications are at room temperature unless otherwise specified. In the interest of constant product improvement, we reserve the right to change specifications without notice.	All specifications are at roo In the interest of constant p
	Entered: John LD Engineer: Sup Sales: P Date: 3 3 1 11 Date: 3 3 1 11 Date: 3		Temperature ("F)	Iemp		(Ex
sponse (10 Hz to upper 5% point).	SUPPLIED ACCESSORIES: Model 081A99 Cap Screw (3) Model ACS-1 NIST traceable frequency response (10 Hz to upper 5% point).	g IIII "	500 700	Typical Sensitivity Deviation vs Temperature	Sensitivity Deviaition(%)	G
		(3)	7/16-27 2-Pin Side Through Holes (3)	7/16-27 2-Pin Side Through Holes (3)	ition	Electrical Connector Electrical Connection Position Mounting
PS081 for details.	[5] See PCB Declaration of Conformance PS081 for details	1m [1]	25.4 mm x 19 mm 75 gm	1.0 in x 0.75 in 2.6 oz		Size (Height x Diameter) Weight
method.	 [3] Zero-based, least-squares, straight line method. [4] Transverse sensitivity is typically ≤ 3%. 		Ceramic	Ceramic		Sensing Element
by external signal conditioning electronics.	[1] Typical. [2] Low frequency response is determined by external signal conditioning electronics.		Differential	Differential		Output Polarity
	NOTES:		>10 ⁹ ohm >100 kohm	>10 ⁹ ohm >100 kohm	to Pin 70°F) to Pin 900°F)	Insulation Resistance(Pin to Pin 70°F) Insulation Resistance(Pin to Pin 900°F)
		Ξ	>10 ⁸ ohm	>10 ⁸ ohm	to Case 70°F)	Insulation Resistance((Pin to Case 70°F)
		[1]	26 pF ≤ 2 pF	26 pF ≤ 2 pF	setween Pins)	Capacitance(Pin to Case) Capacitance(Unbalance Between Pins)
		[1]	525 pF	525 pF		Capacitance(Pin to Pin)
			1 E8 rad	1 E8 rad	Integrated Gamma Flux)	Radiation Exposure Limit(Integrated Gamma Flux) Electrical
			0.32 (m/s²)/με 1 E10 N/cm²	0.033 g/με 1 E10 N/cm²	Integrated Neutron Flux)	Base Strain Sensitivity Radiation Exposure Limit(Integrated Neutron Flux)
Ex nL IIC T1	Hazardous Area Approval Ex nL IIC T1, -54°C≤Ta≤450°C,		See Graph	See Graph		Temperature Response
l, -54°C≤Ta≤135°C, Ex nL IIC T4, -54°C≤Ta≤135°C, II 3 G	Hazardous Area Approval Ex nL IIC T4, -54°C≤Ta≤135°C, II 3 G		See Graph	See Graph		Temperature Response
	Hazardous Area Approval Ex ia IIC T1, -54°C≤Ta≤450°C, II 1 G	р <u>к</u>	± 19,620 m/s² pk	± 2000 g pk		Environmental Overload Limit(Shock)
	Hazardous Area Approval Ex la lic 14, -34 cs las los c,	[4]	≤ 1 % ≤ 5 %	≤ 1 %		Transverse Sensitivity
01	EX - Hazardous Area Approval- contact factory for specific approvals	3 [≥ 25 kHz	≥ 25 kHz		Resonant Frequency
except where noted below. More than one option may be used.	except where noted below.	ж [2]	± 9810 m/s² pk	± 1000 g pk		Measurement Range
OPTIONAL VERSIONS Optional versions have identical specifications and accessories as listed for the standard model	OPTION Optional versions have identical specification	2)	<u>SI</u> 1.02 pC/(m/s²)	10 pC/g		Performance Sensitivity(± 5 %)
ECN #: 35386		100				357C71
Revision: E	CHARGE OUTDUIT ACCELEROMETER	、 > つつ				Model Number

Related Document No modifications permitted without the approval of the authorized person

ATEX Approved Sensors

High Temperature Accelerometers (357 Series)

English

This sensor has been approved for Hazardous Locations Directive 94/9/EC, Ex nL IIC T4, Ex nL IIC T1, Ex ia IIC T4 and Ex ia IIC T1. For safe use:

- All applicable local electrical laws must be followed
 - The supply electrical parameters must not exceed any of the following values:
 - \circ Uo \leq 30V, Io \leq 100mA, Po \leq 1W, C \leq 1.4nF, L=0mH
 - Ambient operating temperature range:
 - T4: -54°C to +135°C ; T1: -54°C to +450°C

Deutsch

Dieser ist genehmigt worden für Gefährliche Orte Direktive 94/9/EC, Ex nL IIC T4, Ex nL IIC T1, Ex ia IIC T4 und Ex ia IIC T1. Für sicheren Gebrauch:

- Alle zutreffenden örtlichen elektrischen Gesetze müssen gefolgt werden
 - Die Versorgung elektrische Parameter müssen kein von den Folgenden Werten überschreiten:
 - o Uo ≤30V, Io≤100mA, Po≤1W, C≤1.4nF, L= 0mH
 - Umgebungsbedienungstemperaturbereich:
 - T4: -54°C to +135°C ; T1: -54° C to +450° C

<u>Français</u>

Ce détecteur a été approuvé pour les Emplacements Hasardeux Directif 94/9/EC, Ex nL IIC T4, Ex nL IIC T1, Ex ia IIC T4 et Ex ia IIC T1. Pour l'usage sûr :

- Toutes lois électriques, locales et applicables doivent être suivies
 - La provision les paramètres électriques ne doivent pas dépasser n'importe quel des valeurs suivantes :
 - o Uo ≤30V, Io≤100mA, Po≤1W, C≤1.4nF, L= 0mH
- La gamme de température d'opération Ambiante : o T4: -54°C to +135°C ;T1: -54°C to +450° C

Italiano

Questo sensore è stato approvato per le Posizioni Pericolose Direttivo 94/9/EC, Ex nL IIC T4, Ex nL IIC T1, Ex ia IIC T4 ed Ex ia IIC T1. Per l'uso sicuro:

- Tutte le leggi applicabili, locali elettriche devono essere seguite
 - La provvista i parametri elettrici non devono eccedere qualunque dei valori seguenti: o Uo ≤30V, lo≤100mA, Po≤1W, C≤1.4nF, L= 0mH
 - la gamma di temperatura di funzionamento di Ambiente:
 - T4: -54°C to +135°C; T1: -54°C to +450° C

Español

Este sensor se ha aprobado para Ubicaciones Peligrosas Directivas 94/9/EC, Ex nL IIC T4, Ex nL IIC T1, Ex ia IIC T4 y Ex ia IIC T1. Para el uso seguro:

- Todas leyes eléctricas, locales y aplicables se deben seguir
 - El suministro los parámetros eléctricos no deben exceder cualquiera de los siguientes valores: o Uo ≤30V, lo≤100mA, Po≤1W, C≤1.4nF, L= 0mH
 - El Ambiente que opera la gama de la temperatura:
 - T4: -54°C to +135°C; T1: -54°C to +450°C

Русский

Этот датчик был одобрен для Опасной Директивы 94/9/ЕС Местоположений, Ex nL IIC T4, Ex nL IIC T1, Ex ia IIC T4 и Ex ia IIC T1. Для безопасного использования:

- Все применимые местные электрические законы должны сопровождаться
- Поставка электрические параметры не должна превысить ни одной из следующих ценностей:
 - \circ Uo \leq 30V, Io \leq 100mA, Po \leq 1W, C \leq 1.4nF, L= 0mH
 - Окружающий операционный температурный диапазон:
 - o T4: -54°C to +135°C; T1: -54°C to +450°C

Drawing Number: 41343 Revision: NR Ecn Number:

Norsk

Denne sensoren godkjenner for Farlige Plasseringer Direktiv 94/9/EC, Ex nL IIC T4, Ex nL IIC T1, Ex ia IIC T4 og Ex ia IIC T1. For sikker bruk:

- Alle anvendelige lokale elektriske lover fulgt
 - Forsyningen elektriske parametre må ikke overskride noe av de følgende verdiene:
 - o Uo ≤30V, lo≤100mA, Po≤1W, C≤1.4nF, L= 0mH
 - Omgivende betjeningsav temperaturrekkevidde:
 - T4: -54°C to +135°C; T1: -54°C to +450°C

Nederlands

Deze sensor is voor Gevaarlijke Locaties Leidinggevende 94/9/EC, Ex nL IIC T4, Ex nL IIC T1, Ex ia IIC T4 en Ex ia IIC T1 goedgekeurd worden. Voor veilige gebruik:

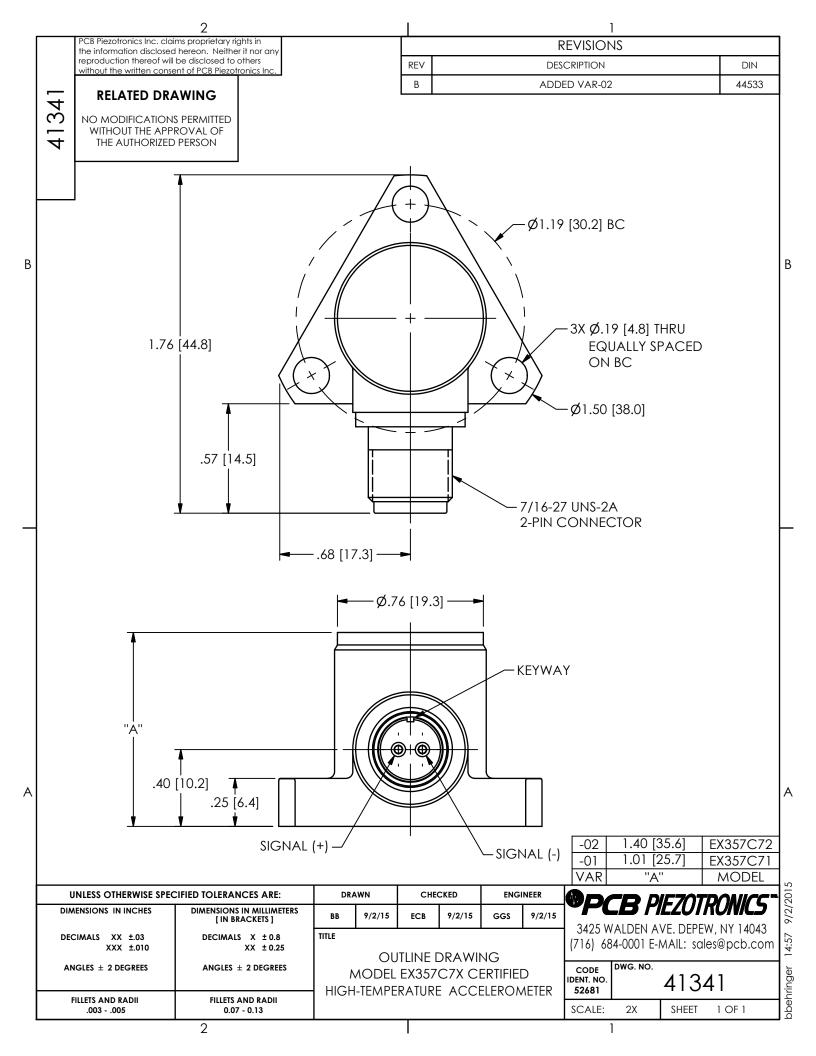
- Alle toepasbare plaatselijke elektrische wetten moeten gevolgd worden
- De aanbod elektrische parameters moeten de volgende waarde niet overschrijden:
 - \circ Uo \leq 30V, Io \leq 100mA, Po \leq 1W, C \leq 1.4nF, L= 0mH
- Het omgevend bediening temperatuur bereik:
 - T4: -54°C to +135°C; T1: -54°C to +450°C

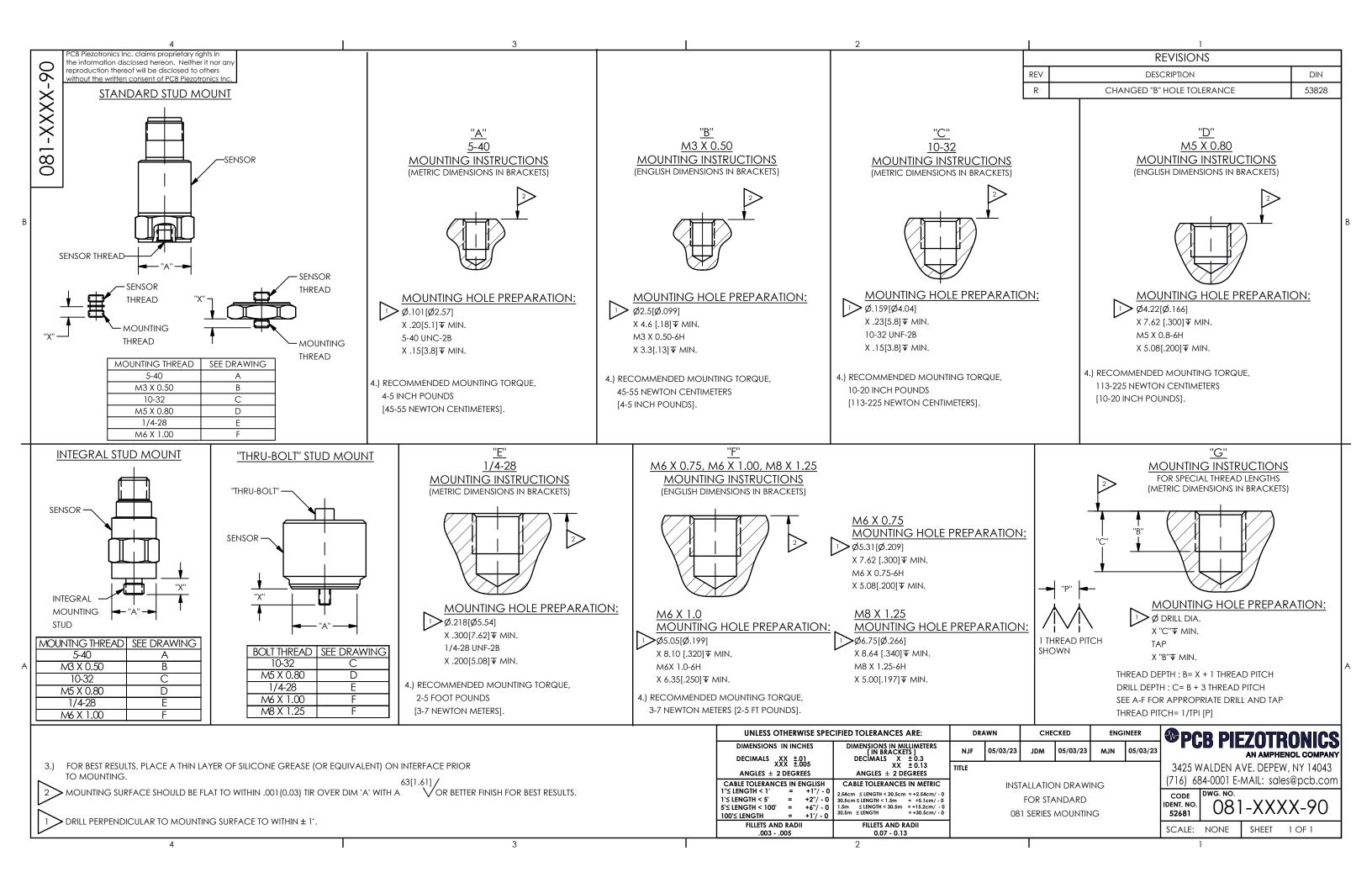
Português

-

Este sensor foi aprovado para a Diretiva 94/9/EC de Posições Arriscada, Ex nL IIC T4, Ex nL IIC T1, Ex ia IIC T4 e Ex ia IIC T1. Para uso seguro:

- Todas as leis elétricas locais aplicáveis devem ser seguidas
- O estoque parâmetros elétricos não devem exceder qualquer dos seguintes valores:
 - Uo ≤30V, Io≤100mA, Po≤1W, C≤1.4nF, L= 0mH
 - Variedade de temperatura operacional ambiente:
 - T4: -54°C to +135°C; T1: -54°C to +450°C


<u>Svensk</u>


_

Den här sensoren er blitt gillat för Riskabel Lokaliseringarna Direktiv 94/9/ EC Ex nL IIC T4, Ex nL IIC T1, Ex ia IIC T4 och Ex ia IIC T1. För kassaskåp använda :

- All användbar lokal elektrisk lag måste bli följde efter
 - Tillförselen som elektriska parametrar inte måste överskrida några av värderar efter:
 - o Uo ≤30V, Io≤100mA, Po≤1W, C≤1.4nF, L= 0mH
- Omgivande opera- temperatur ställa i rad :
 - T4: -54°C to +135°C; T1: -54°C to +450°C

Drawing Number: 41343 Revision: NR Ecn Number:

EU Declaration of Conformity PS181 In Accordance with ISO/IEC 17050

Manufacturer: PCB Piezotronics, Inc.	Authorized	PCB Piezotronics Europe GmbH
3425 Walden Avenue	European	Porschestrasse 20-30
Depew, New York 14043 USA	Representative	: 41836 Hückelhoven, Germany

Certifies that type of equipment: High Temperature Accelerometer(s)

Whose Product Models Include: 357C7x Series with ATEX Approvals

This declaration is applicable to all High Temperature Accelerometer(s) of the above series which have the CE & ATEX mark on their data sheets and where those data sheets refer to this declaration of conformity. The data sheets for all model numbers referenced above, which include the CE & ATEX mark on such data sheets and refer to this Declaration of Conformity are hereby incorporated by reference into this Declaration.

product documentation: 2011/65/EU w/2015/863/EU RoHS Directive
--

Standards to which Conformity is Declared:

Harmonized Standards	EN 60079-0 :2012+ A11:2013	General Explosive Atmosphere
	EN 60079-11 2012 EN 63000:2018	Intrinsic safe, i Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances
EC Type Examination	ATEX Certification	LCIE 08 ATEX 6101 X Ex ia IIC T1, II 1G Ex ia IIC T4, II 1G
Voluntary Certification	Supplemental ATEX Certification	LCIE 08 ATEX 6007 X Ex nL IIC T1, II 3G Ex nL IIC T4, II 3G
Notified Body Name		Laboratoire Central des Industries Electriques (0081)
Notified Body's Address		FONTENAY-AUX-ROSES (Head Office) 33, avenue du Général Leclerc FR- 92260 Fontenay-aux-Roses Tel. : + 33 1 40 95 60 60 Fax : + 33 1 40 95 86 56

Signature:

Name:

I, the undersigned, hereby declare that the equipment specified above conforms to the above Directive(s) Standard(s)

Place: Depew, NY Date: 07/14/2021

ceru

Carrie Termin

Title: **Regulatory Affairs and Product Certification Specialist**

1

1 **ATTESTATION D'EXAMEN CE DE TYPE**

- Appareil ou système de protection destiné à être utilisé en 2 atmosphères explosibles (Directive 94/9/CE)
- Numéro de l'attestation d'examen CE de type 3 LCIE 08 ATEX 6101 X
- Appareil ou système de protection : 4 Accéléromètres haute température

357... Type :

5	Demandeur : Adresse :	PCB Piezotronics Inc. 3425 Walden Avenue, Depew, New York 14043 USA
6	Fabricant : Adresse :	PCB Piezotronics Inc. 3425 Walden Avenue, Depew, New York 14043 USA

- Cet appareil ou système de protection et ses variantes 7 éventuelles acceptées sont décrits dans l'annexe de la présente attestation et dans les documents descriptifs cités en référence.
- Le LCIE, organisme notifié sous la référence 0081 8 conformément à l'article 9 de la directive 94/9/CE du Parlement européen et du Conseil du 23 mars 1994, certifie que cet appareil ou système de protection est conforme aux exigences essentielles de sécurité et de santé pour la conception et la construction d'appareils et de systèmes de protection destinés à être utilisés en atmosphères explosibles, données dans l'annexe II de la directive. Les résultats des vérifications et essais figurent dans le rapport confidentiel Nº 84356/575143.

Le respect des exigences essentielles de sécurité et de santé est assuré par la conformité à : - EN 60079-0 (2004)

- EN 60079-11 (2007)
- Le signe X lorsqu'il est placé à la suite du numéro de 10 l'attestation, indique que cet appareil ou système de protection est soumis aux conditions spéciales pour une utilisation sûre, mentionnées dans l'annexe de la présente attestation.
- Cette attestation d'examen CE de type concerne uniquement 11 la conception et la construction de l'appareil ou du système de protection spécifié, conformément à l'annexe III de la directive 94/9/CE. Des exigences supplémentaires de la directive sont

applicables pour la fabrication et la fourniture de l'appareil ou du système de protection. Ces dernières ne sont pas couvertes par la présente attestation.

Le marquage de l'appareil ou du système de protection doit 12 comporter les informations détaillées au point 15.

Fontenay-aux-Roses, le 3 septembre 2008

EC TYPE EXAMINATION CERTIFICATE

- Equipment or protective system intended for use in 2 potentially explosive atmospheres (Directive 94/9/EC)
- EC type examination certificate number 3 LCIE 08 ATEX 6101 X
- Equipment or protective system : Δ High temperature accelerometers Type : 357 series
- PCB Piezotronics Inc. 5 Applicant : Address : 3425 Walden Avenue, Depew, New York 14043 USA
- Manufacturer : PCB Piezotronics Inc. 6 3425 Walden Avenue, Address : Depew, New York 14043 USA
- This equipment or protective system and any acceptable 7 variation thereto are specified in the schedule to this certificate and the documents therein referred to.
- 8 LCIE, notified body number 0081 in accordance with article 9 of the Directive 94/9/EC of the European Parliament and the Council of 23 March 1994. certifies that this equipment or protective system has been found to comply with the essential Health and Safety Requirements relating to the design and construction of equipment and protective systems intended for use in potentially explosive atmospheres, given in Annex II to the Directive.

The examination and test results are recorded in confidential report N° 84356/575143.

- 9 Compliance with the Essential Health and Safety Requirements has been assured by compliance with : - EN 60079-0 (2004)
 - EN 60079-11 (2007)

008

- If the sign X is placed after the certificate number, it indicates 10 that the equipment or protective system is subject to special conditions for safe use specified in the schedule to this certificate.
- This EC type examination certificate relates only to the 11 design and construction of this specified equipment or protective system in accordance with annex III to the directive 94/9/EC.

Further requirements of the directive apply to the manufacturing process and supply of this equipment or protective system. These are not covered by this certificate.

12 The marking of the equipment or protective system shall oTipolude informations as detailed at 15.

le responsable de certification ATEX ATEX certification manager

Henri CERVELLO

Seul le texte en français peut engager la responsabilité du LCIE. Ce document ne peut être reproduit que dans son intégralité, sans aucune modification The LCIE's liability applies only on the French text. This document may only be reproduced in its entirety and without any change

LCIE Laboratoire Central des Industries Electriques Une société de Bureau Veritas

33, av du Général Leclerc BP 8 92266 Fontenay-aux-Roses cedex France

Tél : +33 1 40 95 60 60 Fax : +33 1 40 95 86 56 contact@lcie.fr www.lcie.fr

01-Annexe III_CE_typ_app - rev0.DOC Société par Actions Simplifiée au capital de 15 745 984 € RCS Nanterre B 408 363 174

Page 1 of 2

13 ANNEXE

14 ATTESTATION D'EXAMEN CE DE TYPE

LCIE 08 ATEX 6101 X

15 DESCRIPTION DE L'APPAREIL OU DU SYSTEME DE PROTECTION

Accéléromètres haute température Type : 357...

Le capteur est composé d'une enveloppe avec un ensemble piezo-cristal et un connecteur.

Paramètres spécifiques du ou des modes de protection concernés :

<u>Ui ≤ 30V, li</u> ≤ 100mA, Pi ≤ 1W, Ci ≤ 1400pF, Li ≈ 0

Le marquage doit être :

PCB Adresse : ... Type : 357... (1) N° de fabrication : ... Année de fabrication : ... III 1G Ex ia IIC T4 (- $54^{\circ}C \le Ta \le +135^{\circ}C$) Ex ia IIC T1 (- $54^{\circ}C \le Ta \le +450^{\circ}C$) LCIE 08 ATEX 6101 X (1)complété avec le modèle

L'appareil doit également comporter le marquage normalement prévu par les normes de construction qui le concerne.

16 DOCUMENTS DESCRIPTIFS

Dossier de certification N° 40688 du 27/08/08. Ce document comprend 4 rubriques (5 pages).

17 CONDITIONS SPECIALES POUR UNE UTILISATION SÛRE

Classement en température : T4 : -54°C \leq Ta \leq +135°C T1 : -54°C \leq Ta \leq +450°C

L'accéléromètre ne doit être raccordé qu'à un matériel certifié de sécurité intrinsèque. Cette association doit être conforme vis-à-vis de la sécurité intrinsèque (voir les paramètres électriques au paragraphe 15).

18 EXIGENCES ESSENTIELLES DE SECURITE ET DE SANTE

Couvertes par les normes listées au point 9.

19 VERIFICATIONS ET ESSAIS INDIVIDUELS Néant.

13 SCHEDULE

14 EC TYPE EXAMINATION CERTIFICATE

LCIE 08 ATEX 6101 X

15 DESCRIPTION OF EQUIPMENT OR PROTECTIVE SYSTEM High temperature accelerometers

Type : 357 series

The sensor is made of an housing with a piezo-crystal assembly and a connector.

Specific parameters of the mode(s) of protection concerned :

Ui \leq 30V, Ii \leq 100mA, Pi \leq 1W, Ci \leq 1400pF, Li \approx 0

The marking shall be :PCBAddress : ...Type : 357... (1)Serial number : ...Year of construction : ...D II 1GEx ia IIC T4 (-54°C ≤ Ta ≤ +135°C)Ex ia IIC T1 (-54°C ≤ Ta ≤ +450°C)LCIE 08 ATEX 6101 X(1)completed with the model

The equipment shall also bear the usual marking required by the manufacturing standards applying to such equipment.

16 DESCRIPTIVE DOCUMENTS

Certification file N° 40688 dated 27/08/08. This file includes 4 items (5 pages).

17 SPECIAL CONDITIONS FOR SAFE USE

Temperature classification : T4 : $-54^{\circ}C \le Ta \le +135^{\circ}C$ T1 : $-54^{\circ}C \le Ta \le +450^{\circ}C$

The accelerometer must be only connected to a certified intrinsically safe equipment. This combination must be compatible regarding intrinsic safety rules (see electrical parameters clause 15).

18 ESSENTIAL HEALTH AND SAFETY REQUIREMENTS

Covered by standards listed at 9.

19 ROUTINE VERIFICATIONS AND TESTS None.

Seul le texte en français peut engager la responsabilité du LCIE. Ce document ne peut être reproduit que dans son intégralité, sans aucune modification The LCIE's liability applies only on the French text. This document may only be reproduced in its entirety and without any change

1

ATTESTATION D'EXAMEN DE TYPE VOLONTAIRE

- 2 Appareil destiné à être utilisé en atmosphères explosibles (Directive 94/9/CE)
- 3 Numéro de l'attestation d'examen de type LCIE 08 ATEX 6107 X
- 4 Appareil

Accéléromètres haute température

Type : 357...

- 5 Demandeur : PCB Piezotronics Inc. Adresse : 3425 Walden Avenue, Depew, New York 14043 USA
- 7 Cet appareil ou système de protection et ses variantes éventuelles acceptées sont décrits dans l'annexe de la présente attestation et dans les documents descriptifs cités en référence.
- 8 Le LCIE certifie que cet appareil ou système de protection est conforme aux exigences essentielles de sécurité et de santé pour la conception d'appareils de catégorie 3 ou système de protection destinés à être utilisés en atmosphères explosibles, données dans l'annexe II de la directive 94/9/CE du Parlement européen et du Conseil du 23 mars 1994.

Les résultats des vérifications et essais figurent dans le rapport confidentiel N° 85284/575960.

- 9 Le respect des exigences essentielles de sécurité et de santé est assuré par la conformité à :
 - EN 60079-0 (2004)
 - EN 60079-15 (2005)
- 10 Le signe X lorsqu'il est placé à la suite du numéro de l'attestation, indique que cet appareil ou système de protection est soumis aux conditions spéciales pour une utilisation sûre, mentionnées dans l'annexe de la présente attestation.
- 11 Cette attestation d'examen de type concerne uniquement la conception, les vérifications et essais de l'appareil ou du système de protection spécifié, conformément à la directive 94/9/CE.

Des exigences supplémentaires de la directive sont applicables pour la fabrication et la fourniture de l'appareil ou du système de protection. Ces dernières ne sont pas couvertes par la présente attestation.

12 Le marquage de l'appareil ou du système de protection doit comporter les informations détaillées au point 15.

Fontenay-aux-Roses, le 10 octobre 2008

VOLUNTARY TYPE EXAMINATION CERTIFICATE

- 2 **Equipment** intended for use in potentially explosive atmospheres (Directive 94/9/EC)
- 3 Type Examination Certificate number LCIE 08 ATEX 6107 X
- 4 Equipment

High temperature accelerometers Type: 357 series

- 5 applicant : PCB Piezotronics Inc. Address : 3425 Walden Avenue, Depew, New York 14043 USA
- 7 This equipment or protective system and any acceptable variation thereto is specified in the schedule to this certificate and the documents therein referred to.
- 8 LCIE certifies that this equipment or protective system has been found to comply with the essential Health and Safety Requirements that relate to the design of category 3 equipment or protective system which is intended for use in potentially explosive atmospheres, given in Annex II of the Directive 94/9/EC of the European Parliament and Council of 23 March 1994.

The examination and test results are recorded in confidential report N° 85284/575960.

- 9 Compliance with the Essential Health and Safety Requirements has been assured by reference to : - EN 60079-0 (2004)
 - EN 60079-15 (2005)
- 10 If the sign X is placed after the certificate number, it indicates that the equipment or protective system is subject to special conditions for safe use specified in the schedule to this certificate.
- 11 This type examination certificate relates only to the design, examination and tests of this specified equipment or protective system in accordance III to the directive 94/9/EC.

Further requirements of the Directive may apply to the manufacturing process and supply of this equipment or protective system. These are not covered by this certificate.

12 The marking of the equipment or protective system shall include informations as detailed at 15.

Le responsable de certification ATEX ATEX certification manager

11 BO, Michel EQUI 0081

Seul le texte en français peut engager la responsabilité du LCIE. Ce document ne peut être reproduit que dans son intégralité, sans aucune modification The LCIE's liability applies only on the French text. This document may only be reproduced in its entirety and without any change LCIE 33, av du Général Leclerc Tél : +33 1 40 5 60 Societ St Actions Simplo3-Annexe III_typ_app - rev1.DOC

LCIE Laboratoire Central des Industries Electriques Une société de Bureau Veritas 33, av du Général Leclerc BP 8 92266 Fontenay-aux-Roses cedex France Tél : +33 1 40 9 80 6 Fax : +33 1 40 95 86 5 contact@lcie.fr

www.lcie.fr

Actions Simplos Anne MENDIAL de 15 745 984 € RCS Nanterre B 408 363 174

13 ANNEXE

14 ATTESTATION D'EXAMEN DE TYPE VOLONTAIRE

LCIE 08 ATEX 6107 X

15 DESCRIPTION DE L'APPAREIL OU DU SYSTEME DE PROTECTION

Accéléromètres haute température Type : 357...

Le capteur est composé d'une enveloppe avec un ensemble piezo-cristal et un connecteur.

Paramètres spécifiques du ou des modes de protection concernés : Ui \leq 30V, li \leq 100mA, Pi \leq 1W

Le marquage doit être :

PCB Adresse : ... Type : 357... (1) N° de fabrication : ... Année de fabrication : ...

🔂 II 3G

Ex nL IIC T4 (-54°C \leq Ta \leq +135°C) Ex nL IIC T1 (-54°C \leq Ta \leq +450°C) LCIE 08 ATEX 6107 X (1)complété avec le modèle

L'appareil doit également comporter le marquage normalement prévu par les normes de construction qui le concerne.

16 DOCUMENTS DESCRIPTIFS

Dossier de certification N° 41124 du 11/09/08. Ce document comprend 4 rubriques (5 pages).

17 CONDITIONS SPECIALES POUR UNE UTILISATION SÛRE

Classement en température : T4 : $-54^{\circ}C \le Ta \le +135^{\circ}C$ T1 : $-54^{\circ}C \le Ta \le +450^{\circ}C$

L'accéléromètre ne doit être raccordé qu'à un matériel dont les paramètres électriques n'excèdent pas les valeurs mentionnées au paragraphe 15.

18 EXIGENCES ESSENTIELLES DE SECURITE ET DE SANTE

Couvertes par les normes listées au point 9.

19 VERIFICATIONS ET ESSAIS INDIVIDUELS Néant. 13 SCHEDULE

14 VOLUNTARY TYPE EXAMINATION CERTIFICATE

LCIE 08 ATEX 6107 X

15 DESCRIPTION OF EQUIPMENT OR PROTECTIVE SYSTEM

High temperature accelerometers Type : 357 series

The sensor is made of an housing with a piezo-crystal assembly and a connector.

Specific parameters of the mode(s) of protection concerned :

Ui ≤ 30V, li ≤ 100mA, Pi ≤ 1W

The marking shall be :

PCB Address : ... Type : 357... (1) Serial number : ... Year of construction : ... Year of construction : ... The series of construction : ... A series of construction : ... A series of construction : ... Performance of construction : ... Year of construction : ... Year

The equipment shall also bear the usual marking required by the manufacturing standards applying to such equipment.

16 DESCRIPTIVE DOCUMENTS

Certification file N° 41124 dated 11/09/08. This file includes 4 items (5 pages).

17 SPECIAL CONDITIONS FOR SAFE USE

Temperature classification : T4 : $-54^{\circ}C \le Ta \le +135^{\circ}C$ T1 : $-54^{\circ}C \le Ta \le +450^{\circ}C$

The accelerometer must be only connected to an equipment whose the electrical parameters do not exceed the values mentioned clause 15.

18 ESSENTIAL HEALTH AND SAFETY REQUIREMENTS

Covered by standards listed at 9.

19 ROUTINE VERIFICATIONS AND TESTS None.