Model Number 212B			
Performance	ENGLISH	SI	
Sensitivity(± 15 %)	18 pC/lb	4,047 pC/kN	
Measurement Range(Compression)	10,000 lb	44.48 kN	
Maximum Static Force(Compression)	15,000 lb	66.72 kN	
Upper Frequency Limit	60,000 Hz	60,000 Hz	[1][2]
Non-Linearity	≤ 1 % FS	≤ 1 % FS	[3]
Environmental			
Temperature Range	-100 to +400 °F	-73 to +204 °C	
Temperature Coefficient of Sensitivity	≤ 0.01 %/°F	≤ 0.018 %/°C	
Electrical			
Capacitance	19 pF	19 pF	[4]
Insulation Resistance	≥ 1E12	≥ 1E12	
Output Polarity(Compression)	Negative	Negative	
Physical			
Preload	2,000 lb	8.896 kN	
Stiffness	16 lb/µin	2.8 kN/µm	[4]
Size (Diameter x Height x Bolt Diameter x	0.870 in x 0.390 in x 3/8 in x	22.1 mm x 9.91 mm x 10 mn	n x
Sensing Surface)	0.665 in	16.89 mm	
Size - ID(Hole Diameter)	0.413 in	10.49 mm	
Size - OD(Sensor)	0.870 in	22.1 mm	
Weight	0.67 oz	19 gm	
Housing Material	Stainless Steel	Stainless Steel	
Sealing	Hermetic	Hermetic	
Electrical Connector	10-32 Coaxial Jack	10-32 Coaxial Jack	
Electrical Connection Position	Side	Side	

All specifications are at room temperature unless otherwise specified. In the interest of constant product improvement, we reserve the right to change specifications without notice. ICP[®] is a registered trademark of PCB Piezotronics, Inc.

			E	CN #: 50221
		PTIONAL VERSIO		ndard model excer
	where noted be	low. More than one op	tion may be used.	nuaru mouer exeer
M - Metric Mou Supplied Access Supplied Access Supplied Access Supplied Access	Int Sory: Model 080A82 A Sory: Model 082B02 A Sory: Model M081A12 Sory: Model M083B02	Assembly Lubricant Inti-Friction Washer 2 Mounting Stud, M8 x 2 Pilot Bushing	1.00, BeCu	
P - Positive Out Output Polarity(put Polarity Compression)	Positive		Positive
W - Water Resis Electrical Conne Electrical Conne	stant Cable ector ection Position	Molded Integral Cab Side	le Moldeo	d Integral Cable Side
NOTES:				
[1]Estimated us [2]Low frequence	ing rigid body dynam cy response and syste	ics calculations. em noise dependent on	choice of external si	ignal conditioning
[1]Estimated us [2]Low frequence electronics. [3]Zero-based, I		em noise dependent on	choice of external si	ignal conditioning
[1]Estimated us [2]Low frequence electronics.	cy response and syste	em noise dependent on	choice of external si	ignal conditioning
[1]Estimated us [2]Low frequence electronics. [3]Zero-based, I	cy response and syste	em noise dependent on	choice of external si	ignal conditioning
[1]Estimated us [2]Low frequence electronics. [3]Zero-based, I [4]Typical.	cy response and syste	em noise dependent on	choice of external si	ignal conditioning
[1]Estimated us [2]Low frequence electronics. [3]Zero-based, I [4]Typical.	cy response and syste	em noise dependent on	choice of external si	ignal conditioning
[1]Estimated us [2]Low frequence electronics. [3]Zero-based, I [4]Typical. SUPPLIED AC Model 080A82 A Model 081A12 M	cy response and syste least-squares, straig CCESSORIES:	em noise dependent on ht line method.	choice of external si	ignal conditioning
[1]Estimated us [2]Low frequence electronics. [3]Zero-based, I [4]Typical. SUPPLIED AC Model 081042 A Model 081A12 M	cy response and syste least-squares, straigl CCESSORIES: assembly Lubricant founting Stud, 5/16-2	em noise dependent on ht line method. 24 x 0.910, BeCu	i choice of external si	ignal conditioning
[1]Estimated us [2]Low frequence electronics. [3]Zero-based, I [4]Typical. SUPPLIED AC Model 081042 A Model 081A12 M	cy response and syste least-squares, straigl CCESSORIES: issembly Lubricant dounting Stud, 5/16-2 nti-Friction Washer	em noise dependent on ht line method. 24 x 0.910, BeCu	choice of external si	ignal conditioning
[1]Estimated us [2]Low frequence electronics. [3]Zero-based, I [4]Typical. SUPPLIED AC Model 080A82 A: Model 081A12 M Model 083B02 A: Model 083B02 Pi	cy response and syste least-squares, straigl CCESSORIES: issembly Lubricant Aounting Stud, 5/16-7 nti-Friction Washer ilot bushing (for Mode	em noise dependent on ht line method. 24 x 0.910, BeCu els 202B and 212B)		
[1]Estimated us [2]Low frequence electronics. [3]Zero-based, I [4]Typical. SUPPLIED AC Model 081042 A Model 081A12 M	cy response and syste least-squares, straigl CCESSORIES: issembly Lubricant dounting Stud, 5/16-2 nti-Friction Washer	em noise dependent on ht line method. 24 x 0.910, BeCu	choice of external si	ignal conditioning Spec Number: 1121

Revision: H

WERE PIEZOTRONICS 3425 Walden Avenue, Depew, NY 14043